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Abstract

Grid cells, discovered more than a decade ago [5], are neurons in the brain of mammals that
fire when the animal is located near certain specific points in its familiar terrain. Intriguingly,
these points form, for a single cell, a two-dimensional triangular grid, not unlike our Figure 3.
Grid cells are widely believed to be involved in path integration, that is, the maintenance of a
location state through the summation of small displacements. We provide theoretical evidence
for this assertion by showing that cells with grid-like tuning curves are indeed well adapted for
the path integration task. In particular we prove that, in one dimension under Gaussian noise,
the sensitivity of measuring small displacements is maximized by a population of neurons
whose tuning curves are near-sinusoids — that is to say, with peaks forming a one-dimensional
grid. We also show that effective computation of the displacement is possible through a second
population of cells whose sinusoid tuning curves are in phase difference from the first. In two
dimensions, under additional assumptions it can be shown that measurement sensitivity is
optimized by the product of two sinusoids, again yielding a grid-like pattern. We discuss the
connection of our results to the triangular grid pattern observed in animals.

1 Introduction

Grid cells [5] are neurons in the dorsocodal medial entorhinal cortex of mammals that fire
when the animal is near specific locations in its familiar environment; intriguingly, these lo-
cations form, for a single cell, a two-dimensional regular triangular grid [5]. Ever since their
discovery, grid cells have been hypothesized to be involved in space representation [5, 4], and
in particular in neural algorithms “that integrate information about place, distance, and di-
rection” [5], a task usually referred to as path integration [5, 8]. But why are neurons with
grid-like tuning curves well adapted for the task of path integration? This is the question we
address in this paper.

Path integration presumably entails the measurement of small displacements. Therefore, for
path integration to be effective, measurement of small displacements has to be as accurate
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Figure 1: The optimum tuning curve

as possible. What is the tuning curve, for neurons measuring small displacements, that has
the highest possible sensitivity, that is, the smallest possible variance? We show that, in one
dimension, optimal measurement sensitivity is achieved through a one-dimensional grid.

In particular, we consider a population of neurons measuring small displacements on the circle.
Working on the circle instead of the line segment, or the infinite line, simplifies the analysis
by avoiding edge effects. We assume that the tuning curves of these neurons are cyclical shifts
of one another, and that the noise of the measurement is Gaussian. We seek the tuning curve
maximizing the accuracy of the measurement. A useful surrogate of accuracy is the Fisher
information [6], which upper-bounds the accuracy of any estimator. We establish that the
tuning curve maximizing Fisher information is a sinusoidal-like wave (see Figure 1) — that
is to say, a tuning curve whose peaks form a grid. The frequency of the wave is that of the
eigenvector corresponding to the smallest positive eigenvalue of the noise correlation matrix.
We say “sinusoidal-like” because, mathematically, the optimal solutions form a family of
near-sinusoidal functions parametrized by any function ψ : [0, 1] 7→ [0, 1], with the common
sinusoid corresponding to the identity function (notice the differences between the sinusoid-
like waves in Figure 2).

But how can the displacement be read out from the change in spiking rates in such a popula-
tion? We notice that the actual displacement can be computed with the help of a second cell
population which is identical to the first, albeit with tuning curves phase-shifted by 90o.

This last observation about the computation of displacement is relevant when exploring how
our analysis can be extended to two dimensions. Again, in order to avoid edge effects we
are working on the torus (the unit square with its opposite sides identified). Under quite hefty
assumptions (of independence of both correlation and tuning curves, as well as of independent
optimization of sensitivity in each direction) it can be shown that the optimum tuning curve
in two dimensions is indeed a grid. We speculate that the triangular grid may be the result
of optimization of measurement sensitivity under an additional constraint, and that constraint
may be computational: In two dimensions, the problem of inferring the displacement from
tuning curve change requires not one additional phase-shifted population of cells, but three
such populations. The interface of the four phase-shifted populations is best achieved through
a triangular grid (Figure 3).
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Related work: Over the past decade, there has been much theoretical investigation of grid
cells, their origin, and their role. It has been noted that a grid-like pattern can result from the
interference of two, or possibly three, sinusoidal waves [2], while periodic tuning curves on
the circle [11] and the torus [8] can be generated by neural networks (see Figure 3A and B in
[4]); however, these models were not proposed in the context of optimizing the accuracy of
measurement. It has also been shown that continuous attractor models can generate triangular
grid-like responses [1], while experimental data are consistent with a 2-dimensional response
of the population [15]. Grid cells were interpreted in [12] and, in a different way, in [3], as
very efficient novel neural codes for encoding position and velocity, and in [7] it is shown that
in this arena grid cells are more apt than place cells; these works are methodologically close to
ours in that they also employ Fisher information for their analysis and comparisons — without,
however, seeking the tuning curve design that maximizes it. Cells with one-dimensional grid-
like firing patterns have also very recently come up in the analysis of the responses of animal
grid cells to one-dimensional environments [14], characterized as projections (“slices”) of
a two-dimensional lattice to the one-dimensional circumstances of the experiment. Finally,
recently it was claimed in [10] that the tuning curve in one dimension with maximum Fisher
information is a sinusoid curve, while the product of two such curves is optimum in two
dimensions, results very similar to ours; unfortunately (as pointed out in Sections 2 and 3) the
mathematical development in that manuscript contains significant gaps.

2 The optimal tuning curve is periodic

Consider a population of N neurons measuring a small angular displacement at a point on
the circle. We assume that the tuning curves of the N neurons are identical, albeit shifted
by multiples of the angle 2π

N
. We seek the tuning curve that maximizes the sensitivity of

measuring small displacements.

The neurons respond to an angular stimulus θ ∈ [0, 2π], and the tuning curve of the ith neuron
is denoted by fi(θ); we assume that the tuning curves are identical but shifted by multiples of
2π
N

, that is, fi+1 mod N(θ) = fi(θ + 2π
n

). The average population activity caused by a stimulus
is thus the vector f(θ) = (f1(θ), f2(θ), ..., fN(θ)). The derivative dfi

dθ
is denoted ḟi, and we

denote by ḟ(θ) the vector (ḟ1(θ), ḟ2(θ), ..., ḟN(θ)).

A stimulus θ results in the response ri(θ) = fi(θ) + ηi, for i = 1, . . . , N , where ηi is Gaussian
noise. The values of noise at different neurons, ηi and ηj , are correlated, and this correlation is
assumed to be independent of θ, and denoted Ci,j , a quantity that depends on the distance on
the ring of the neurons i and j. It follows that the noise correlation matrix C is both circulant
and symmetric.

Importantly, we also assume that the total signal power — the sum of the squares of the slopes
of the tuning curves — is bounded from above by a constant, which we take to be one. Thus
ḟ(θ)T ḟ(θ) ≤ 1 for all θ.

If the stimulus changes from θ to θ + ∆θ, this results in population activity r(θ + ∆θ). The
goal of the decoding system is to estimate ∆θ from the change in the population response —
that is, from r(θ)− r(θ+ ∆θ). To do this as effectively as possible, the overall variance of the
measurement must be as small as possible. Instead of this “overall variance”, it is convenient
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in this context to work with the Fisher information of the population, a function of the tuning
curves and the correlation matrix which is known, by the Cramer-Rao theorem [6], to bound
from above the accuracy of any any unbiased estimator. We seek the tuning curves fi(θ) with
the largest Fisher information under correlation matrix C.

Under Gaussian noise, and the assumption that C is nonsingular, it is well known [6, 13] that
the Fisher information can be written as follows:

I(θ) = ḟ(θ)TC−1ḟ(θ) (1)

Thus, we seek the vector ḟ satisfying ḟT ḟ ≤ 1 that maximizes the right-hand side of (1).

Furthermore, C−1 is also symmetric, and its eigenvalues are the inverses of the eigenvalues of
C, while its eigenvectors are the same as those of C.

Recall now the Courant-Fischer theorem [9] (stated below for the case of real symmetric
matrices and the largest eigenvalue only):

Theorem 1 (Courant-Fischer, 1953) If A is symmetric, then the vector x in the unit ball
xTx ≤ 1 that maximizes xTAx is the eigenvector corresponding to the largest eigenvalue of
A.

Comparing with equation (1), we conclude that the optimum tuning curve vector f has deriva-
tive ḟ equal to the eigenvector corresponding to the smallest positive eigenvalue of C (the
inverse of the largest eigenvalue of C−1). What is this eigenvector?

Since C is circulant and symmetric, it is well known [9] that each eigenvalue λk, for k =
0, . . . , N

2
− 1, has multiplicity two, and the two corresponding eigenvectors are the two sinu-

soidal waves vk and wk:

vk = [cos(0), cos(kδ), cos(2kδ), . . . , cos((N − 1)kδ)] and

wk = [sin(0), sin(kδ), sin(2kδ), . . . , sin((N − 1)kδ)],

where δ = 2π
N

and k = 0, 1, . . . , N
2
− 1.

We conclude that the optimum tuning curve vector has derivative of the form

ḟ(θ) = αk(θ)vk + βk(θ)wk,

where α2
k(θ) + β2

k = 1 and the smallest positive eigenvalue of C is λk. We now apply the
change of variables 1 αk(θ) = sin(φ(θ)), βk(θ) = cos(φ(θ)) to obtain

ḟ i(θ) = sin(φ(θ)) cos(ikδ) + cos(φ(θ)) sin(ikδ) = sin(φ(θ) + ikδ). (2)

1The otherwise similar argument in [10] does not contain this step, and as a result it is incomplete and the full
spectrum of optimal solutions (see Figure 2) is missed.
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Recall that we are assuming that the tuning curves of theN neurons are identical, albeit shifted
by δ = 2π

N
; that is, for all i and θ, fi+1(θ) = fi(θ+δ), and thus ḟi+1(θ) = ḟi(θ+δ). Substituting

into (2) we conclude that sin(φ(θ)+(i+1)kδ) = sin(φ(θ+ δ)+ ikδ) for all θ, or equivalently

φ(θ + δ) = φ(θ) + kδ + 2nπ, (3)

for some integer n. The simplest solution of (3) is φ(θ) = (k + nN)θ + c for all θ and for
some constant c (which we take zero without loss of generality) and integer n. It follows that
ḟi(θ) = sin(Kθ + ikδ), and thus

fi(θ) =
1

K
cos(Kθ + ikδ) +

∣∣∣∣ 1

K

∣∣∣∣ , (4)

where K = k + nN for some integer n (positive, zero, or negative), and we took the constant
of the integration to be | 1

K
| so the tuning curve takes only positive values.

However, (3) has many more solutions. Let ψ(θ) be any function mapping [0, δ] to the reals,
and, for any θ ∈ [0, 2π], define θ′ ∈ [0, δ] and θ′′ ∈ {0, δ, 2δ, . . . 2π − δ} by the equation
θ = θ′ + θ′′. Then the function

ḟ(θ) = sin(ψ(θ′) + θ′′)

is also the derivative of an optimal tuning curve. Indicatively, in Figure 2 we show the tuning
curves resulting from six simple functions ψ, including ψ(x) = x (the true sinusoid).

(a) ψ(x) = x (b) ψ(x) = 10x (c) ψ(x) = x2

δ

(d) ψ(x) = 1 (e) ψ(x) =
√
xδ (f) ψ(x) = 0

Figure 2: Six optimum tuning curves

3 Two Dimensions

In view of the one-dimensional result, one may suspect that grid-like structures may also be
optimal in two dimensions. Intuitively, it is tempting to try and reduce the two-dimensional
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case to the one-dimensional case just solved, and show that the optimum two-dimensional
tuning curve must be the product of two sinusoids, and therefore a grid. Unfortunately, this
matter turns out to be quite a bit more complicated.

Assume a population of neurons measuring displacements on the torus (the product of two
circles, or, equivalently, a square with opposite edges identified in the parallel way), whose
tuning curves are shifts of one another along some lattice on the torus defined by the unit
vectors along two different directions x and y (not necessarily orthogonal). We make some
additional assumptions:

• The noise correlations in the x and y directions have the same form and are indepen-
dent of each other. That is, the correlation tensor decomposes into the product of two
identical correlation matrices.

• We further assume that the tuning curve of the neurons can also be decomposed as the
product of identical one-dimensional tuning curves in the x and y dimensions. It then
follows that the Fisher information in the x dimension has the form

Ix(x) =
[
ḟx(x)TC−1ḟx(x)

]
·
[
(fy(y)TC−1fy(y))

]
, (5)

and similarly for the y direction.

• Identifying the optimum tuning curve, even under these assumptions, is still ill-defined,
because of the possibly unbounded second factor in (5): fy must be obtained by inte-
grating ḟy, a step that introduces an unbounded integration constant. We could of course
impose an upper bound on fy — a justified assumption since neurons cannot fire at ar-
bitrarily high rates, — but then the optimization problem becomes an intractable one,
involving integral inequality constraints2. We can obtain a meaningful solution only
under one additional assumption: That the Fisher information in each of the x and y
directions is maximized independently of the other direction. That is, the overall sensi-
tivity is not maximized, and instead the sensitivities along the two directions x and y are
maximized separately, yielding an overall suboptimal solution. This is not implausible,
if one considers the independent evolution of two separate modules, each measuring
displacement in one of the two directions.

Under these assumptions, the result for the one-dimensional case does generalize immediately,
and the tuning curve maximizing the Fisher information at all stimuli turns out to be the outer
product of near-sinusoidal waves in the x and y directions. If the two directions form an angle
of 120o, the familiar triangular grid results. The idea that the triangular firing field structure
can result from the interference of two oscillations has been suggested before [2]; however,
the advantage of this structure was unclear.

But why should the two directions x and y be at an angle of 120o to form the familiar triangular
grid observed in [5]? One possible answer comes from algorithmic considerations, discussed
next.

2This difficulty is ignored in [10].
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4 Computing the displacement

Consider a population of cells around the circle as in the previous section with the sinusoid
tuning curve f(θ) in (4) above, measuring (under noise) the change in firing rate ∆f =
f(θ) − f(θ + ∆θ). What is the mechanism whereby the displacement ∆θ is inferred from
the measurement of ∆f? This seems problematic, since the value of the stimulus θ appears to
be needed, and keeping track of θ is the purpose of path integration... But upon closer consid-
eration, we note that the decoding mechanism does not quite need the stimulus θ, but just its
cosine. Recall that, as ∆θ goes to zero, ∆f = ḟ∆θ, where f = sin(Kθ + const). Hence,

∆θ = ∆f
1

K cos(Kθ)
. (6)

In the one-dimensional case, this additional information can be obtained with a very simple
architecture: Suppose that there is a second population of neurons, with identical tuning curve
g(θ) with the primary population, albeit shifted by an angle α 6= 0, π; say α = 90o. Then this
new population yields a similar equation, with sin replacing cos because of the phase shift:

∆θ = ∆g
1

K sin(Kθ)
. (7)

Thus we have two trigonometric equations for the two unknowns ∆θ and cos(Kθ), which can
be easily solved: By dividing (6) by (7) we note that tan(θ) = ∆g

∆f
, and hence

∆θ = ∆f
1 + ( ∆g

∆f
)2

K
.

That is, the displacement measurement can be computed from the two populations. We con-
clude that, in one dimension, a second identical population of neurons shifted by 90o suffices
for an effective readout.

Now in two dimensions, the equivalent of (6) is

∆θxK cos(Kθx) + ∆θyK cos(Kθy) = ∆f.

Notice that now there are four unknowns (∆θx, cos(Kθx), ∆θy, and cos(Kθy)). We con-
clude that three additional populations of neurons seem to be required, with different two-
dimensional shifts from the original one. The most natural way to implement such a scheme is
through shifts in three directions, forming equal angles of 120o with each other (see Figure 3).
Hence the familiar triangular grid may be the most natural way to implement this mechanism.
Further analytical articulation of this point is the subject of future work.

5 Discussion

What is the origin and utility of the grid cells’ distinctive firing field, and what does it have
to do with path integration? We have shown that, in one dimension, the tuning curve that
optimizes the accuracy of displacement measurements is a near-sinusoid wave, whose peaks
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Figure 3: Four interlaced populations of grid cells

naturally form a one-dimensional grid. In two dimensions, we needed several further assump-
tions in order to show that the optimum tuning curve is the product of two sinusoidal waves
in two non-parallel directions. If these two directions form an angle of 120o, the familiar tri-
angular grid results. We have also presented ideas about a possible mechanism for computing
the change in position from the change in the response. For two dimensions, our proposed
mechanism predicts the existence of four populations of grid cells with regularly displaced
firing fields, and suggests that the triangular architecture may be the optimum solution of the
joint problem of maximizing both sensitivity and accuracy of decoding.

One may further speculate about grid cells for three dimensions (relevant for animals such
as bats and sea mammals). Here, our analysis predicts a total of six populations, and these
must be interlaced in a way analogous to that in Figure 3. The arrangement in Figure 3 works
because the simple triangular lattice of one population, say population A, if copied three times
and appropriately shifted, has the property that each point has at least one neighbor from each
of the other three populations. This suggests the following technical question in 3-dimensional
geometry: Is there a lattice in three dimensions with the property that, if it is duplicated six
times, each point of each copy of the lattice is adjacent to at least one point from each of the
other five copies? It turns out that the lattice generated by the vectors (0, 3, 0), (0, 0, 2), (1, 1, 1)
has this property: Notice that the corresponding matrix has determinant 6, suggesting that six
copies of the lattice can be arranged in space, and it is easy to check that each point of each
copy is at distance one from a point from each of the other copies. Therefore, intriguing
compromises do exist between the design of a neural architecture for path integration in three
dimensions and the realities of three-dimensional geometry.
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